

Technical Memo Enhanced Natural Attenuation for PFAS

This article by Charles J. Newell et al. published in *Wiley's Remediation Journal* discusses practical guidelines is based on a 'three-tiered lines of evidence' (LOE) approach for evaluating monitored natural attenuation (MNA) of PFAS. The approach outlined provides methods to assess PFAS retention in the subsurface. It also includes a list of methods to enhance MNA of PFAS plumes if MNA alone is not sufficient to manage the risk of the plume.

Key Takeaways:

With Natural Attenuation (NA), the PFAS is still in the subsurface, it is just not moving forward at a rate to impact a receptor. This is a key concept that is intrinsic to the concept of environmental risk where: Environmental Risk = Hazard X Exposure. By eliminating the potential for exposure, you eliminate the risk. That is how NA works.
• This echoes what is being taught by the Interstate Technology Regulatory Council (ITRC) where their definition of remediation is: "A process used to reduce or eliminate the risk for humans and the environment that may result from exposure to harmful chemicals"
• Compartment partitioning (e.g. sorbed mass, matrix diffusion) can offer significant contaminant mass retention and retards forward progress of migrating PFAS.
• Chemical retention can result in retained mass (PFAS precursors bound in source area).
 Direct measurements (soil and groundwater samples) Indirect measurements of retention (Foc of aquifer, heterogeneous zone offering matrix storativity) Modeling of PFAS contaminant transport including matrix diffusion and competitive sorption (I believe our PlumeForce[™] program developed by Dr. Birnstingl is the most advanced program available in this program and competitive sorption (I believe our PlumeForce[™] program developed by Dr. Birnstingl is the most advanced program available
 Adding sorbents to the subsurface can increase retention (i.e. PlumeStop® Colloidal Carbon) thereby retarding the PFAS to the extent that Natural Attention is achievable. Reducing water intrusion reduces flux (e.g. caps, physical barriers, phytoremediation) Sparing gases in some areas can increase partitioning at the air/water interface (e.g. foam fractionation)